My name is Lê and I believe that the greatest challenge in education is to make science and math appealing.
This is why I aim at bringing enthusiasm and excitement to the readers’ learning experience.
I now run a Robustly Beneficial wiki, mostly on AI ethics, which has come to fascinate me!

Cryptography and Number TheoryCryptography and Number Theory By Scott McKinney | Updated:2016-01 | Views: 12334 Over 300 years ago, a mathematician named Fermat discovered a subtle property about prime numbers. In the 1970's, three mathematicians at MIT showed that his discovery could be used to formulate a remarkably powerful method for encrypting information to be sent online. The RSA algorithm, as it is known, is used to secure ATM transactions, online business, banking, and even electronic voting. Surprisingly, it's not too difficult to understand, so let's see how it works.

The Revolutionary Galois TheoryThe Revolutionary Galois Theory By Lê Nguyên Hoang | Updated:2016-02 | Prerequisites: Linear Algebra and Higher Dimensions, Imaginary and Complex Numbers, Symmetries and Group Theory | Views: 18656 In 1832, Évariste Galois died. He was 20. The night before his death, he wrote a legendary letter to his friend, in which he claims to have found a mathematical treasure! Sadly, this treasure had long been buried in total indifference! It took nearly a century to rediscover it! Since then, Galois' legacy has become some of the finest pure mathematics, which represents a hugely active field of research today with crucial applications to cryptography. Galois' work is now known as Galois theory. In essence, it unveils the hidden symmetries of numbers!

The Triangle of PowerThe Triangle of Power By Lê Nguyên Hoang | Updated:2016-10 | Views: 7966 Notations do not matter to the essence of mathematics. But poor notations can be misleading. Notations based on exponents, radicals and logarithms definitely are. They are very distinct, even though they are supposed to describe very similar relations between numbers. The triangle of power is a recently proposed alternative. In short, I am convinced!

Model-Dependent RealismModel-Dependent Realism By Lê Nguyên Hoang | Updated:2016-02 | Views: 4032 Introduced by the two renowned theoretical physicists Stephen Hawking and Leonard Mlodinov in their book The Grand Design in 2010, model-dependent realism is a new controversial understanding of the universe. Based on solid logical reasonings and recent developments in physics, this concept may well be an incredible breakthrough for philosophy and science, as well as metaphysics.

The Unlikely Correctness of Newton's LawsThe Unlikely Correctness of Newton's Laws By Lê Nguyên Hoang | Updated:2016-02 | Views: 6575 Do moving objects exhaust? Does the Moon accelerate? How strong is the gravity pull of the Moon on the Earth compared to that of the Earth on the Moon? While we've all learned Newton's laws of motion, many of us would get several answers of these questions wrong. That's not so surprising, as Newton's laws are deeply counter-intuitive. By stressing their weirdness with Veritasium videos, this article dives into a deep understanding of classical mechanics.

Dynamics, Chaos, Fractals (pt 1)Dynamics, Chaos, Fractals (pt 1) By Scott McKinney | Updated:2016-02 | Views: 3899 The study of dynamical systems, natural or abstract systems that evolve at each instance in time according to a specific rule, is an active and fruitful area of research in mathematics. Its study has yielded insights into the nature of social networks such as Facebook, the spread of diseases such as influenza, and the behavior of the financial markets. In this series of posts, we'll look in depth at dynamical systems, as well as at the related subjects of chaos theory and fractals, all of which are both interesting and useful for understanding our world.

The Surprising Flavor of Infinite SeriesThe Surprising Flavor of Infinite Series By Lê Nguyên Hoang | Updated:2020-01 | Views: 9771 1+2+4+8+16+...=-1, as proven by Henry Reich on Minute Physics! Now, as a mathematician, I must say that his proof is far from being rigorous. In fact, anyone familiar with the surprising flavor of infinite series should not find it convincing. Surprisingly though, his proof can be rigorously and naturally justified! Find out how!

Evolutionary Game TheoryEvolutionary Game Theory By Lê Nguyên Hoang | Updated:2016-02 | Views: 5067 Evolutionary Game Theory is a relatively recent branch of game theory which studies the dynamics of games. Originally used to describe populations of species in biology, and more particularly, the consequences of their interactions to the evolution of their populations, this field now produces interesting results for economic and environmental modelings.