# Make it simple. Make it cool.

Science4All is a website of *Quality Popular Science*.

I believe that the greatest challenge in education is to make science and math appealing.

This is why I aim at bringing enthusiasm and excitement to the readers’ learning experience.

The Secretary/Toilet Problem and Online Optimization The Secretary/Toilet Problem and Online Optimization

By Lê Nguyên Hoang | **Updated:**2015-04 | **Views**: 1602

A large chunk of applied mathematics has focused on optimizing something with respect to all relevant data. However, in practice, especially in the online world, the data is not available to us, and, yet, we’re still expected to make nearly optimal decisions. This problem is exemplified by the famous secretary problem, where a manager needs to decide to hire candidates right after interviews, even though he has not yet met all the candidates. In this article, we review this classic as well as many very recent developments., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Harmonious Mathematics of Music The Harmonious Mathematics of Music

By Lê Nguyên Hoang | **Updated:**2015-02 | **Views**: 1806

It was when hearing the sounds of hammers that Pythagoras realized the ubiquity of numbers in mathematical harmony. He would go on laying down the mathematical foundations of music, based on octaves, perfect fifths and major thirds. This mathematics of music would then become the favourite playground of all musicians, from Beethoven to Gangnam Style., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Limitless Vertigo of Cantor’s Infinite The Limitless Vertigo of Cantor’s Infinite

By Lê Nguyên Hoang | **Updated:**2015-02 | **Views**: 1527

No one believed him. Not even fellow mathematicians. They thought he was wrong. They thought he was crazy. Even he ended up doubting himself and went crazy. And yet, he had mathematically proved it all. Georg Cantor had figured out how to manipulate the infinite. Even more remarkable, he showed that there were actually several infinities; and some are bigger than others!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Geometry and General Relativity Geometry and General Relativity

By Scott McKinney | **Updated:**2013-01 | **Views**: 1328

From our “intrinsic” point-of-view on the surface of the Earth, it appears to be flat, but if we examine the Earth from the “extrinsic” point of view, somewhere off the Earth’s surface, we can see that it is clearly a curved surface. Amazingly, it is possible to determine that the Earth is spherical simply by taking measurements on its surface, and it is possible to generalize these measurements in order to study the shape of the universe. Mathematicians such as Riemann did just this, and Einstein was able to apply these geometric ideas to his “general theory of relativity”, which describes the relation between gravitation, space, and time., by Scott McKinney Scott McKinney

Graduate student in mathematics and aspiring teacher/entrepreneur in the field of mathematics, education, and internet business. I earned my BA in pure mathematics from Cornell University and have completed one year of postgraduate study in mathematics and education in Ohio State University.

Evolutionary Game Theory Evolutionary Game Theory

By Lê Nguyên Hoang | **Updated:**2014-02 | **Views**: 2570

Evolutionary Game Theory is a relatively recent branch of game theory which studies the dynamics of games. Originally used to describe populations of species in biology, and more particularly, the consequences of their interactions to the evolution of their populations, this field now produces interesting results for economic and environmental modelings., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Non-Euclidean Geometry and Map-Making Non-Euclidean Geometry and Map-Making

By Scott McKinney | **Updated:**2013-01 | **Views**: 2443

Geometry literally means “the measurement of the Earth”, and more generally means the study of measurements of different kinds of space. Geometry on a flat surface, and geometry on the surface of a sphere, for example, are fundamentally different. A consequence of this disparity is the fact that it is impossible to create a perfectly accurate (flat) map of the Earth’s (spherical) surface. Every map of the Earth necessarily has distortions. In this post we look at a few different methods of map-making and evaluate their distortions as well as their respective advantages., by Scott McKinney Scott McKinney

Graduate student in mathematics and aspiring teacher/entrepreneur in the field of mathematics, education, and internet business. I earned my BA in pure mathematics from Cornell University and have completed one year of postgraduate study in mathematics and education in Ohio State University.

Euclidean Geometry and Navigation Euclidean Geometry and Navigation

By Scott McKinney | **Updated:**2013-01 | **Views**: 1933

This is the first of a series of three posts. In this post we’ll see how the Greeks developed a system of geometry – literally “Earth measure” – to assist with planetary navigation. We then will see why their assumption that the Earth is flat means that Euclidean geometry is insufficient for studying the Earth. The Earth’s spherical surface looks flat from our perspective, but is actually qualitatively different from a flat surface. In the ensuing posts, we’ll see why this implies that it is impossible to make a perfectly accurate map of the Earth, and build on this idea to get a glimpse into Einstein’s revolutionary theories regarding the geometry of the space-time universe., by Scott McKinney Scott McKinney

Graduate student in mathematics and aspiring teacher/entrepreneur in the field of mathematics, education, and internet business. I earned my BA in pure mathematics from Cornell University and have completed one year of postgraduate study in mathematics and education in Ohio State University.

Shannon’s Information Theory Shannon’s Information Theory

By Lê Nguyên Hoang | **Updated:**2015-04 | **Views**: 13961

Claude Shannon may be considered one of the most influential person of the 20th Century, as he laid out the foundation of the revolutionary information theory. Yet, unfortunately, he is virtually unknown to the public. This article is a tribute to him. And the best way I’ve found is to explain some of the brilliant ideas he had., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Glaciers: Retreat, Moraines, Valleys, Fjörds Glaciers: Retreat, Moraines, Valleys, Fjörds

By Lê Nguyên Hoang | **Updated:**2014-04 | **Views**: 803

Glaciers are spectacular phenomenons of nature. The physics they are based on is surprising, while the geological role they have is essential. In this article, we discuss these facts, as well as their retreats and their dangers., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Limitless Vertigo of Cantor’s Infinite The Limitless Vertigo of Cantor’s Infinite

By Lê Nguyên Hoang | **Updated:**2015-02 | **Views**: 1527

No one believed him. Not even fellow mathematicians. They thought he was wrong. They thought he was crazy. Even he ended up doubting himself and went crazy. And yet, he had mathematically proved it all. Georg Cantor had figured out how to manipulate the infinite. Even more remarkable, he showed that there were actually several infinities; and some are bigger than others!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Game Theory and the Nash Equilibrium Game Theory and the Nash Equilibrium

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 7978

In the movie “A Beautiful Mind”, the character is John Nash. He is one of the founders of a large and important field of applied mathematics called game theory. Game Theory is the study of human interactions. Its fallouts in economy, politics or biology are countless. This article gives you an introduction to the concepts of this amazing way of thinking., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Optimization by Linear Programming Optimization by Linear Programming

By Lê Nguyên Hoang | **Updated:**2014-05 | **Views**: 3840

Operations Research deals with optimizing industrial systems. Those systems can be very complex and their modeling may require the use of hundreds, thousands or even millions of variables. Optimizing over millions of variables may seem impossible, but it can be done if the optimization problem has a linear structure. Learn more on this linear structure and optimization solutions!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Most Troubling Experiments on Human Behavior The Most Troubling Experiments on Human Behavior

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 1244

We all intuitively think of ourselves as independent creatures with strong free will. However, many disturbing experiments about fashion, conformity, obedience, environment, choice and opinions have been troubling this idea we make of ourselves. These ought to be lessons of humility for all of us., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Mechanism Design and the Revelation Principle Mechanism Design and the Revelation Principle

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 2628

Whenever you need to make a group of people interact, you are designing a mechanism. If you want to achieve a good interaction, you need to make sure your mechanism is well designed. In this article, I’ll show you main features of mechanisms through various examples. I’ll also talk about a great mathematical tool for mechanism design: the revelation principle., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Tortuous Geometry of the Flat Torus The Tortuous Geometry of the Flat Torus

By Lê Nguyên Hoang | **Updated:**2015-09 | **Views**: 8202

Take a square sheet of paper. Can you glue opposite sides without ever folding the paper? This is a conundrum that many of the greatest modern mathematicians, like Gauss, Riemann, and Mandelbrot, couldn’t figure out. While John Nash did answer yes, he couldn’t say how. After 160 years of research, Vincent Borrelli and his collaborators have finally provided a revolutionary and breathtaking example of a bending of a square sheet of paper! And it is spectacularly beautiful!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Spacetime of Special Relativity Spacetime of Special Relativity

By Lê Nguyên Hoang | **Updated:**2014-03 | **Views**: 2044

Einstein’s theory of relativity is the best-known breakthrough of the History of science. The reason for that isn’t only the accuracy of the theory, but also and mainly its beauty. As Einstein once said: “Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone.” This is what the article aims at showing Einstein’s simple ideas of special relativity and their beauty., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Frontier of Cold: The Quest for Absolute Zero The Frontier of Cold: The Quest for Absolute Zero

By Lê Nguyên Hoang | **Updated:**2014-04 | **Views**: 1520

While mountaineers aim at tops of mountains, some scientists have sought the bottom of temperature scale with frequent surprising wonders at different scales. This article takes you through these scientists’ journey!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Construction and Definition of Numbers Construction and Definition of Numbers

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 3865

Although they have been used for thousands of years, an actual definition of numbers was given less than a century ago! From the most fundamental level of set theory, this article takes you to the journey of the construction of natural, integer, rational, real and complex numbers., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Unlikely Correctness of Newton’s Laws The Unlikely Correctness of Newton’s Laws

By Lê Nguyên Hoang | **Updated:**2015-09 | **Views**: 2382

Do moving objects exhaust? Does the Moon accelerate? How strong is the gravity pull of the Moon on the Earth compared to that of the Earth on the Moon? While we’ve all learned Newton’s laws of motion, many of us would get several answers of these questions wrong. That’s not so surprising, as Newton’s laws are deeply counter-intuitive. By stressing their weirdness with Veritasium videos, this article dives into a deep understanding of classical mechanics., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Cubic Ball of the 2014 FIFA World Cup The Cubic Ball of the 2014 FIFA World Cup

By Lê Nguyên Hoang | **Updated:**2015-09 | **Views**: 4014

I know this sounds crazy. Even stupid. But Adidas did design a cubic ball, called brazuca, for the 2014 World Cup. And, yet, this cubic ball is rounder than any previous ball in football History. How is it possible? This article explains it., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Colours and Dimensions Colours and Dimensions

By Lê Nguyên Hoang | **Updated:**2015-09 | **Views**: 1396

You’ve probably learned early on that there are three primary colours. But why three? And why these three? Surprisingly, the answer lies in the beautiful mathematics of linear algebra and (high) dimension spaces!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Dynamics, Chaos, Fractals (pt 1) Dynamics, Chaos, Fractals (pt 1)

By Scott McKinney | **Updated:**2013-04 | **Views**: 2562

The study of dynamical systems, natural or abstract systems that evolve at each instance in time according to a specific rule, is an active and fruitful area of research in mathematics. Its study has yielded insights into the nature of social networks such as Facebook, the spread of diseases such as influenza, and the behavior of the financial markets. In this series of posts, we’ll look in depth at dynamical systems, as well as at the related subjects of chaos theory and fractals, all of which are both interesting and useful for understanding our world., by Scott McKinney Scott McKinney

Graduate student in mathematics and aspiring teacher/entrepreneur in the field of mathematics, education, and internet business. I earned my BA in pure mathematics from Cornell University and have completed one year of postgraduate study in mathematics and education in Ohio State University.

Type Theory: A Modern Computable Paradigm for Math Type Theory: A Modern Computable Paradigm for Math

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 6990

In 2013, three dozens of today’s brightest minds have just laid out new foundation of mathematics after a year of collective effort. This new paradigm better fits both informal and computationally-checkable mathematics. There is little doubt that it will fundamentally change our perspective on rigorous knowledge, and it could be that, in a few decades, the book they published turns out to be the bedrock of all mathematics, and, by extension, all human knowledge! Have a primer of this upcoming revolution, with this article on type theory, the theory that the book builds upon!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Multicriteria with MACBETH Multicriteria with MACBETH

By Lê Nguyên Hoang | **Updated:**2013-07 | **Views**: 1675

As more and more complex problems are dealt with in our societies, developing models such as multi-criteria analysis is crucial to better understand these problems. MACBETH is a state-of-the-art method to do just that. Its functioning is described in this article., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Essence of Quantum Mechanics The Essence of Quantum Mechanics

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 6604

Quantum mechanics is the most accurate and tested scientific theory, Its applications to real life are countless, as all new technologies are based on its principles. Yet, it’s also probably the most misunderstood theory, because it constantly contradicts common sense. This article presents the most important features of the theory., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Dynamics of the Wave Function: Heisenberg, Schrödinger, Collapse Dynamics of the Wave Function: Heisenberg, Schrödinger, Collapse

By Lê Nguyên Hoang | **Updated:**2014-02 | **Prerequisites: **The Essence of Quantum Mechanics, Imaginary and Complex Numbers, Linear Algebra and Higher Dimensions | **Views**: 4030

On one hand, the dynamics of the wave function can follow Schrödinger equation and satisfy simple properties like Heisenberg uncertainty principle. But on the other hand, it can be probabilistic. This doesn’t mean that it’s totally unpredictable, since the unpredictability is amazingly predictable. Find out how these two dynamics work!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Regulation of Electricity Markets Regulation of Electricity Markets

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 1271

Electricity markets are not like any markets. In particular, they cannot be liberalized without regulation. In the article, I list the reasons why this market is specific and I conclude by giving you important features of a good regulation., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Geological Wonders of Iceland Geological Wonders of Iceland

By Lê Nguyên Hoang | **Updated:**2013-06 | **Views**: 1139

Iceland is at an amazingly active volcanic location, yielding extreme geological phenomenons. Iceland is therefore a giant laboratory for geologists. It’s also an awesome place for visitors, especially hikers. This article introduces some of Iceland’s wonders., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Conditional Probabilities: Know what you Learn Conditional Probabilities: Know what you Learn

By Lê Nguyên Hoang | **Updated:**2014-02 | **Views**: 2728

Suppose a man has two children, one of them being a boy. What’s the probability of the other one being a boy too? This complex question has intrigued thinkers for long until mathematics eventually provided a great framework to better understanding of what’s known as conditional probabilities. In this article, we present the ideas through the two-children problem and other fun examples., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Duality in Linear Programming Duality in Linear Programming

By Lê Nguyên Hoang | **Updated:**2014-05 | **Prerequisites: **Optimization by Linear Programming, Linear Algebra and Higher Dimensions | **Views**: 10024

Duality in linear programming yields plenty of amazing results that help understand and improve algorithms of resolution. This article shows the construction of the dual and its interpretation, as well as major results. In particular, matching of primal and dual bases will be dealt, before presenting the issue of degeneracy and its dual interpretation., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Advanced Game Theory Overview Advanced Game Theory Overview

By Lê Nguyên Hoang | **Updated:**2015-01 | **Prerequisites: **Game Theory and the Nash Equilibrium | **Views**: 3802

This article gives an overview of recent developments in game theory, including evolutionary game theory, extensive form games, mechanism design, bayesian games and mean field games., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Most Beautiful Equation of Math: Euler’s Identity The Most Beautiful Equation of Math: Euler’s Identity

By Lê Nguyên Hoang | **Updated:**2014-12 | **Views**: 27851

In 1988, Euler’s identity was elected most beautiful theorem of mathematics. It has been widely taught worldwide. But have you ever stopped to really sense the meaning of this incredible formula? This article does., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Differential Calculus and the Geometry of Derivatives Differential Calculus and the Geometry of Derivatives

By Lê Nguyên Hoang | **Updated:**2014-12 | **Views**: 3495

Differential calculus is one of the most important concept of mathematics for science and engineering. This article focuses on its fundamental meaning., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Optimization by Integer Programming Optimization by Integer Programming

By Lê Nguyên Hoang | **Updated:**2014-05 | **Prerequisites: **Optimization by Linear Programming | **Views**: 4099

Integer programming is arguably the greatest achievement of applied mathematics. Half of the time, it’s what’s used to solve real-world problems!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Primal and Dual Simplex Methods Primal and Dual Simplex Methods

By Lê Nguyên Hoang | **Updated:**2014-05 | **Prerequisites: **Optimization by Linear Programming, Duality in Linear Programming | **Views**: 5998

The simplex method is one of the major algorithm of the 20th century, as it enables the resolution of linear problems with millions of variables. An intuitive approach is given. But that’s not all. We present an important variant called the dual simplex. Finally, we’ll explain its main default, that is, when facing degeneracy., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Imaginary and Complex Numbers Imaginary and Complex Numbers

By Lê Nguyên Hoang | **Updated:**2014-12 | **Views**: 3848

My first reaction to imaginary numbers was… What the hell is that? Even now, I have trouble getting my head around these mathematical objects. Fortunately, I have a secret weapon: Geometry! This article proposes constructing complex numbers with a very geometrical and intuitive approach, which is probably very different from what you’ve learned (or will learn)., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Cryptography and Quantum Physics Cryptography and Quantum Physics

By Scott McKinney | **Updated:**2012-12 | **Views**: 1530

Recent discoveries in the branch of physics known as quantum mechanics have powerful applications in the field of network security – they have the potential to break forms of internet security based on mathematics such as the RSA algorithm, and also present new ways to safely send information. In this article we’ll see how a physics-based method can be used to secure online information., by Scott McKinney Scott McKinney

Graduate student in mathematics and aspiring teacher/entrepreneur in the field of mathematics, education, and internet business. I earned my BA in pure mathematics from Cornell University and have completed one year of postgraduate study in mathematics and education in Ohio State University.

Hypothesis Test with Statistics: Get it Right! Hypothesis Test with Statistics: Get it Right!

By Lê Nguyên Hoang | **Updated:**2013-11 | **Views**: 3351

Statistician Johnson recently claimed that up to 25% of published scientific experimental results were just wrong! To see why, let’s get to the bottom of the scientific method! And it’s probably more complicated than you think. In this article, we apply it rigorously to “prove” $\pi=3$. This will highlight the actually mechanism of the scientific method, its limits, and how much messages of experiments are often deformed!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics

By Lê Nguyên Hoang | **Updated:**2014-11 | **Views**: 18457

The second law of thermodynamics is my favorite law in physics, mainly because of the troubling puzzles it raises! Indeed, what your professors may have forgotten to tell you is that this law connects today’s world to its first instant, the Big Bang! Find out why!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

P versus NP: A Crucial Open Problem P versus NP: A Crucial Open Problem

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 4880

P=NP is probably today’s most crucial open problem. Not only is it a very theoretical question in computer science and mathematics, but it also has major implications to real world. Its resolution could revolutionize the world. This article gives the definition and major results of P=NP., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Space Deformation and Group Representation Space Deformation and Group Representation

By Lê Nguyên Hoang | **Updated:**2014-03 | **Views**: 1549

All along the 20th century, pure algebraists have dug deep into the fundamental structures of mathematics. In this extremely abstract effort, they were greatly help by the possibility of representing these structures by space deformations, which could then be understood much better. This has led to breakthroughs, including the proof of Fermat’s las theorem. This article introduces the ideas of group representations., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Addictive Mathematics of the 2048 Tile Game The Addictive Mathematics of the 2048 Tile Game

By Lê Nguyên Hoang | **Updated:**2014-06 | **Views**: 7994

2048 is the Internet sensation of the year. This very addictive game has been downloaded hundred of millions of times. Interestingly, this game raises plenty of intriguing mathematical questions. This article unveils some of them!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Probabilistic Algorithms, Probably Better Probabilistic Algorithms, Probably Better

By Lê Nguyên Hoang | **Updated:**2013-08 | **Views**: 1150

Probabilities have been proven to be a great tool to understand some features of the world, such as what can happen in a dice game. Applied to programming, it has enabled plenty of amazing algorithms. In this article, we discuss its application to the primality test as well as to face detection. We’ll also deal with quantum computers, as well as fundamental computer science open problems P=BPP and NP=BQP., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Magic of Analysis The Magic of Analysis

By Lê Nguyên Hoang | **Updated:**2014-12 | **Views**: 1212

This article retraces the endless pursuit of the infinite that is at the basis of mathematical analysis. From the first approximations of pi to the shape of our limitless universe, from the essential usefulness of differential equations to the troubles with infinite sums, we present the great ideas of mathematical geniuses all along History., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Symmetries and Group Theory Symmetries and Group Theory

By Lê Nguyên Hoang | **Updated:**2014-12 | **Views**: 1636

Beauty is extremely hard to define. Yet, physicists and artists seem to agree on an important feature of beauty, created by mathematicians: Symmetries. This article aims at introducing the beauty and the concepts on symmetries, from the basic geometrical symmetries to the more abstract fundamental automorphisms., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Spacetime of General Relativity Spacetime of General Relativity

By Lê Nguyên Hoang | **Updated:**2015-09 | **Views**: 8677

Most popular science explanations of the theory of general relativity are very nice-looking. But they are also deeply misleading. This article presents you a more accurate picture of the spacetime envisioned by Albert Einstein., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

The Surprising Flavor of Infinite Series The Surprising Flavor of Infinite Series

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 5675

1+2+4+8+16+…=-1, as proven by Henry Reich on Minute Physics! Now, as a mathematician, I must say that his proof is far from being rigorous. In fact, anyone familiar with the surprising flavor of infinite series should not find it convincing. Surprisingly though, his proof can be rigorously and naturally justified! Find out how!, by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Poincaré Conjecture and Homotopy Poincaré Conjecture and Homotopy

By Lê Nguyên Hoang | **Updated:**2014-12 | **Views**: 4954

Poincaré conjecture is the most recent major proven theorem. Posited a century ago by Henri Poincaré, this major conjecture of topology was solved by Gregori Perelman. It has revolutionized our understanding of space and raised intriguing questions regarding the global structure of our Universe., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

From Divide and Conquer to Parallelization From Divide and Conquer to Parallelization

By Lê Nguyên Hoang | **Updated:**2013-04 | **Views**: 1296

Divide and conquer is a extremely powerful concept that is being used a lot in computer science, and that can also be applied in real life. We present its application to sorting algorithms. Then we’ll talk about a major fundamental open mathematical problem, called P=NC., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

Linear Algebra and Higher Dimensions Linear Algebra and Higher Dimensions

By Lê Nguyên Hoang | **Updated:**2015-01 | **Views**: 2765

Linear algebra is a one of the most useful pieces of mathematics and the gateway to higher dimensions. Using Barney Stinson’s crazy-hot scale, we introduce its key concepts., by Lê Nguyên Hoang Lê Nguyên Hoang

Math and science popularizer. Postdoc at MIT in Applied Maths.

PhD from Polytechnique Montreal. MS from Polytechnique ParisTech.

## Here’s what they say about Science4All…

Looking for substance behind popular science? This is a great resource! http://t.co/jE1aHvac

— SciAfterSchool (@SciAfterSchool) January 28, 2013

Fair division in Game Theory modelled using Friends. pretty awesome @helpatz http://t.co/yVCCS887

— Emma Alexander (@emmaaaaa8) November 27, 2012

Lê Nguyên Hoang (el promotor science4all) es uno de los jóvenes matemáticos más brillantes de la actualidad (y una gran persona)

— IMUVA (@IMUVA_) March 7, 2013

Really nice article with great visuals covering Stable Marriage algorithms and variants. http://t.co/rSHnDKCyxa #GraphNerds

— David W. Allen (@DataRiot) March 24, 2013

#Marriage Problem and Variants: http://t.co/XLMGMcIO98 #FF @science__4__all (he's a #genius)

— Berlanda Mauro (@mauroberlanda) April 12, 2013

This post almost makes me want to teach science again http://t.co/d6csaIRgra Almost.

— Fawn Nguyen (@fawnpnguyen) April 18, 2013

Great article on tree physics by @science__4__all: http://t.co/uiftTXyh3G

— Derek Muller (@veritasium) April 18, 2013

This really is a great article: Hypothesis Testing http://t.co/KVVKayG84K Well done @science__4__all (cc @DrTonyPadilla @numberphile)

— James Grime (@jamesgrime) May 17, 2013

AMAZING! Indeed I was talking about http://t.co/DqHJ4kkcxI articles. @science__4__all More scientists should contribute – @benstill !!!???

— Jennifer Crouch (@JenniferCrouch) May 30, 2013

why do I end up reading poincare conjecture? http://t.co/R2hdy1Xgh8 :).

— Avivah Yamani (@ivie97) June 5, 2013

So good. Love how Le takes the Euler formula (and utilities problem) and kicks it up a bunch of notches. http://t.co/KVoxCjvsQI

— Fawn Nguyen (@fawnpnguyen) June 20, 2013

Masterful exposition of topology made accessible: Euler's Formula and the Utilities Problem http://t.co/uL4Aw9VAnC HT @fawnpnguyen

— Joshua Bowman (@Thalesdisciple) June 21, 2013

Enjoy #math with @republicofmath @jamestanton @maanow @MrHonner @wilderlab @earlsamuelson @WWMGT @daveinstpaul @science__4__all #ff

— Alexander Bogomolny (@CutTheKnotMath) June 21, 2013

I would like to do a #ff for @science__4__all who are doing an excellent job with their maths articles http://t.co/R7G1EhMcg7

— James Grime (@jamesgrime) June 21, 2013

Just RIDICULOUS HOW GOOD this is, "The Beauty of Ellipses, Parabolas and Hyperbolas" by @science__4__all
http://t.co/eBCazmcxVi

— Fawn Nguyen (@fawnpnguyen) July 22, 2013

Bravo! Lê Nguyên Hoang Founder Science4All Your Papers are Brilliant!
http://t.co/AvCQPZcwPB What Does this Mean!

— David Valin (@gbdavid1) July 22, 2013

@science__4__all Your document it's all beauty! Thanks for sharing it!

— Margarita Parra (@BMPM1) September 9, 2013

Shannon's Information Theory: lucid, illustrated thorough introduction, keep it as a reference, share it as a gift! http://t.co/tqR8xKqDBA

— Arthur Doohan (@artied) September 29, 2013

#shannon <3<3<3 #enmettrepartout <3<3<3 #dansmaface “@MathUpdate: Shannon's Information Theory http://t.co/XdLEL7JUj7”

— Dr. Bisounours (@BisounoursJp) September 29, 2013

Muy bueno el blog Science4all Le Nguyen Hoang http://t.co/3VfpY7QZ7o esfuerzo para divulgar conceptos de forma sencilla y divertida

— Luis A. Núñez (@nunezluis) October 27, 2013

Always a great blog "@science__4__all: Discover irrational, constructible, transcendental and computable numbers! http://t.co/BRBIf5PrDM"

— James Grime (@jamesgrime) November 7, 2013

Simple, well-explained, well-written article about evolution of science philosophy, from Ptolemy to Stephen Hawking http://t.co/Njf3auyAtP

— Cloud-Big Data-EDD (@Ediscoverycloud) November 12, 2013

How can one not love #math? RT @centerofmath The Beauty of Ellipses, Parabolas and Hyperbolas – http://t.co/SSmmLMhj1B #math

— MathDaily (@MathDaily) November 28, 2013

Barney Stinson's theories to explain linear algebra. It's legen(wait-for-it)dary and awesome.
By @science__4__all
http://t.co/X9SVtDFyHr

— Helene Sarah Becotte (@hbecotte) November 28, 2013

Not just the Traveling Santa Problem. See a discussion of SC's route as a vehicle routing problem http://t.co/iBRQqsDCJS

— AmericanMathSociety (@amermathsoc) December 23, 2013

Wishing everyone a geeky mary christmas. http://t.co/TaAZQ2ZI2P

— InTheNext10Years (@inthenext10year) December 25, 2013

This is a fantastic explanation of Quantum Mechanics http://t.co/FZl9OFQqaH

— Nick Gotch (@pszNicx) December 30, 2013

Wow, really good overview! (The Essence of Quantum Mechanics – S4A) http://t.co/rtr8LeRIXn

— Xavi (@nymiro) December 30, 2013

For no reason, do you know @science__4__all http://t.co/R7G1EhMcg7 They're very good.

— James Grime (@jamesgrime) January 10, 2014

Looks cool! RT @science__4__all: NEW ARTICLE!!! Get an intimate feel of The Greatest Feat of Mathematics: http://t.co/qsb5lAA9IP

— Danica McKellar (@danicamckellar) February 21, 2014

@science__4__all I really like your web site! Great work…I am telling any friends interested in science and mathematics about it.

— Joe Dayton ☮ (@JoeDaytonMN) February 22, 2014

"The Most Amazing Thing About Trees" is, frankly, amazing. http://t.co/amaHMkwSX1 HT: @highlyanne

— Adam Mandelman (@amandelman) February 25, 2014

This is so damn cool! "The Tortuous Geometry of the Flat Torus" http://t.co/gybXXnZP2z – last image = new wallpaper!

— LucasVB (@LucasVB) March 16, 2014

Incredible cool way to visualize imaginary numbers: http://t.co/ZPEDz5yN6e #math #mathchat #mathtip #mathed #edchat #edtech

— Rimwe (@RimweLLC) April 27, 2014

This is the first truly convincing argument I've seen that the 131072 tile is the largest possible for the #2048game. http://t.co/ez0JCxjbTs

— Dave Radcliffe (@daveinstpaul) June 20, 2014

To all students of data, this is a must-read > Shannon’s Information Theory: http://t.co/3fHla3HWl0 by @science__4__all #DataScience

— Kirk Borne (@KirkDBorne) July 8, 2014

http://t.co/YNd1CFXPnd Follow
Lê Nguyên Hoang @science__4__all to read and contribute to "popular" science #Interesting

— anbudan BALA|எஅ.பாலா (@AmmU_MaanU) July 13, 2014

I enjoyed this engaging read by LN Hoang about some #Maths research: The New Big Fish Called Mean-Field Game Theory: http://t.co/OiemfWnT7y

— Anita Hall (@ani2tall) September 24, 2014

@science__4__all Thank you for your articles. Just amazing! Wonder how you compile and relate so many things…

— Prasad Gokhale (@Prasad_Gokhale) September 28, 2014

This is GREAT! Even non-math people will enjoy this. The Tortuous Geometry of the Flat Torus: http://t.co/9eZamXiB5o

— Kim Langen (@KimLangen) October 2, 2014

arguably #ComputerScience owes more to #Shannon than anyone else. An excellent article on Shannon's Info Theory: http://t.co/u5AI6qjbKO

— Numan Sheikh (@numansheikh) October 13, 2014

Good one for interested ones, Puzzles, science, methodologies and manymore: http://t.co/NN31T9JNMe

— Pankaj Saraf (@saraf_pankaj) December 21, 2014

Santa's optimization for Christmas visits! A wonderful explanation to Vehicle Routing Problem. http://t.co/pBfq7wW0aP #OperationsResearch

— Vandana Narasimhan (@vandy_ie) December 25, 2014

@science__4__all Great! Primary colours, wavelengths, cones, vectors and spaces, matrices,…this article is really multidimensional.

— Prasad Gokhale (@Prasad_Gokhale) January 10, 2015

@science__4__all hey, you have a great blog! I'm enjoying reading through your articles

— Cam Davidson-Pilon (@Cmrn_DP) January 25, 2015

Another amazing read! #math http://t.co/04oImebBaT

— Cassie Lynn Holmes (@CassiHolmes) March 1, 2015

실시간으로 결정을 해야하고 한번 결정하면 되돌릴 수 없을때, 수학으로 전략 만들기
“@MathbloggingAll:The Secretary/Toilet Problem and Online Optimization http://t.co/G4nMBhTdIG”

— 상일 (@sioum) April 2, 2015