My name is Lê and I believe that the greatest challenge in education is to make science and math appealing.
This is why I aim at bringing enthusiasm and excitement to the readers’ learning experience.
I now run a Robustly Beneficial wiki, mostly on AI ethics, which has come to fascinate me!
The Limitless Vertigo of Cantor's InfiniteThe Limitless Vertigo of Cantor's Infinite By Lê Nguyên Hoang | Updated:2015-12 | Views: 3262 No one believed him. Not even fellow mathematicians. They thought he was wrong. They thought he was crazy. Even he ended up doubting himself and went crazy. And yet, he had mathematically proved it all. Georg Cantor had figured out how to manipulate the infinite. Even more remarkable, he showed that there were actually several infinities; and some are bigger than others!
Imaginary and Complex NumbersImaginary and Complex Numbers By Lê Nguyên Hoang | Updated:2016-02 | Views: 6312 My first reaction to imaginary numbers was... What the hell is that? Even now, I have trouble getting my head around these mathematical objects. Fortunately, I have a secret weapon: Geometry! This article proposes constructing complex numbers with a very geometrical and intuitive approach, which is probably very different from what you've learned (or will learn).
Model-Dependent RealismModel-Dependent Realism By Lê Nguyên Hoang | Updated:2016-02 | Views: 4061 Introduced by the two renowned theoretical physicists Stephen Hawking and Leonard Mlodinov in their book The Grand Design in 2010, model-dependent realism is a new controversial understanding of the universe. Based on solid logical reasonings and recent developments in physics, this concept may well be an incredible breakthrough for philosophy and science, as well as metaphysics.
Spacetime of Special RelativitySpacetime of Special Relativity By Lê Nguyên Hoang | Updated:2016-02 | Views: 3173 Einstein's theory of relativity is the best-known breakthrough of the History of science. The reason for that isn't only the accuracy of the theory, but also and mainly its beauty. As Einstein once said: "Most of the fundamental ideas of science are essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone." This is what the article aims at showing Einstein's simple ideas of special relativity and their beauty.
Cryptography and Number TheoryCryptography and Number Theory By Scott McKinney | Updated:2016-01 | Views: 12815 Over 300 years ago, a mathematician named Fermat discovered a subtle property about prime numbers. In the 1970's, three mathematicians at MIT showed that his discovery could be used to formulate a remarkably powerful method for encrypting information to be sent online. The RSA algorithm, as it is known, is used to secure ATM transactions, online business, banking, and even electronic voting. Surprisingly, it's not too difficult to understand, so let's see how it works.
Pluto is NOT (not?) a PlanetPluto is NOT (not?) a Planet By Lê Nguyên Hoang | Updated:2015-12 | Views: 3109 In 2006, Pluto was officially demoted from its planetary status. When we dig a little bit, this isn't much of the surprise. What's more interesting is rather why it ever was regarded as a planet, as the History of Pluto highlights a magic enterprise that science is!
Multicriteria with MACBETHMulticriteria with MACBETH By Lê Nguyên Hoang | Updated:2016-02 | Views: 2704 As more and more complex problems are dealt with in our societies, developing models such as multi-criteria analysis is crucial to better understand these problems. MACBETH is a state-of-the-art method to do just that. Its functioning is described in this article.
Euler's Formula and the Utilities ProblemEuler's Formula and the Utilities Problem By Lê Nguyên Hoang | Updated:2016-01 | Views: 13902 I was a kid when I was first introduced to the deceptively simple utilities problem. It's only lately that I've discovered its solution! And it's an amazing one! Indeed, it provides a wonderful insight into some fundamental mathematics, including Euler's formula! This is nothing less than the gateway to the wonderful world of algebraic topology!