#### Welcome to Science4All

My name is Lê and I believe that the greatest challenge in education is to make science and math appealing.

This is why I aim at bringing enthusiasm and excitement to the readers’ learning experience.

Science4All is also available in French.

Dynamics, Chaos, Fractals (pt 1) Dynamics, Chaos, Fractals (pt 1)

By Scott McKinney |

The study of dynamical systems, natural or abstract systems that evolve at each instance in time according to a specific rule, is an active and fruitful area of research in mathematics. Its study has yielded insights into the nature of social networks such as Facebook, the spread of diseases such as influenza, and the behavior of the financial markets. In this series of posts, we’ll look in depth at dynamical systems, as well as at the related subjects of chaos theory and fractals, all of which are both interesting and useful for understanding our world.

By Scott McKinney |

**Updated:**2016-02 |**Views**: 2708The study of dynamical systems, natural or abstract systems that evolve at each instance in time according to a specific rule, is an active and fruitful area of research in mathematics. Its study has yielded insights into the nature of social networks such as Facebook, the spread of diseases such as influenza, and the behavior of the financial markets. In this series of posts, we’ll look in depth at dynamical systems, as well as at the related subjects of chaos theory and fractals, all of which are both interesting and useful for understanding our world.

The Beauty of Ellipses, Parabolas and Hyperbolas The Beauty of Ellipses, Parabolas and Hyperbolas

By Lê Nguyên Hoang |

The conic sections, that is, ellipses, parabolas and hyperbolas, are too often presented analytically. Yet, their amazing beauty is actually their spectacular geometry, as well as their omnipresence! This article presents plenty of illustrative descriptions of their uncountable applications!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 22618The conic sections, that is, ellipses, parabolas and hyperbolas, are too often presented analytically. Yet, their amazing beauty is actually their spectacular geometry, as well as their omnipresence! This article presents plenty of illustrative descriptions of their uncountable applications!

Geometry and General Relativity Geometry and General Relativity

By Scott McKinney |

From our “intrinsic” point-of-view on the surface of the Earth, it appears to be flat, but if we examine the Earth from the “extrinsic” point of view, somewhere off the Earth’s surface, we can see that it is clearly a curved surface. Amazingly, it is possible to determine that the Earth is spherical simply by taking measurements on its surface, and it is possible to generalize these measurements in order to study the shape of the universe. Mathematicians such as Riemann did just this, and Einstein was able to apply these geometric ideas to his “general theory of relativity”, which describes the relation between gravitation, space, and time.

By Scott McKinney |

**Updated:**2015-12 |**Views**: 1514From our “intrinsic” point-of-view on the surface of the Earth, it appears to be flat, but if we examine the Earth from the “extrinsic” point of view, somewhere off the Earth’s surface, we can see that it is clearly a curved surface. Amazingly, it is possible to determine that the Earth is spherical simply by taking measurements on its surface, and it is possible to generalize these measurements in order to study the shape of the universe. Mathematicians such as Riemann did just this, and Einstein was able to apply these geometric ideas to his “general theory of relativity”, which describes the relation between gravitation, space, and time.

Spacetime of General Relativity Spacetime of General Relativity

By Lê Nguyên Hoang |

Most popular science explanations of the theory of general relativity are very nice-looking. But they are also deeply misleading. This article presents you a more accurate picture of the spacetime envisioned by Albert Einstein.

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 9339Most popular science explanations of the theory of general relativity are very nice-looking. But they are also deeply misleading. This article presents you a more accurate picture of the spacetime envisioned by Albert Einstein.

Primal and Dual Simplex Methods Primal and Dual Simplex Methods

By Lê Nguyên Hoang |

The simplex method is one of the major algorithm of the 20th century, as it enables the resolution of linear problems with millions of variables. An intuitive approach is given. But that’s not all. We present an important variant called the dual simplex. Finally, we’ll explain its main default, that is, when facing degeneracy.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Prerequisites:**Optimization by Linear Programming, Duality in Linear Programming |**Views**: 7405The simplex method is one of the major algorithm of the 20th century, as it enables the resolution of linear problems with millions of variables. An intuitive approach is given. But that’s not all. We present an important variant called the dual simplex. Finally, we’ll explain its main default, that is, when facing degeneracy.

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics

By Lê Nguyên Hoang |

The second law of thermodynamics is my favorite law in physics, mainly because of the troubling puzzles it raises! Indeed, what your professors may have forgotten to tell you is that this law connects today’s world to its first instant, the Big Bang! Find out why!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 18820The second law of thermodynamics is my favorite law in physics, mainly because of the troubling puzzles it raises! Indeed, what your professors may have forgotten to tell you is that this law connects today’s world to its first instant, the Big Bang! Find out why!

The Revolutionary Galois Theory The Revolutionary Galois Theory

By Lê Nguyên Hoang |

In 1832, Évariste Galois died. He was 20. The night before his death, he wrote a legendary letter to his friend, in which he claims to have found a mathematical treasure! Sadly, this treasure had long been buried in total indifference! It took nearly a century to rediscover it! Since then, Galois’ legacy has become some of the finest pure mathematics, which represents a hugely active field of research today with crucial applications to cryptography. Galois’ work is now known as Galois theory. In essence, it unveils the hidden symmetries of numbers!

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Prerequisites:**Linear Algebra and Higher Dimensions, Imaginary and Complex Numbers, Symmetries and Group Theory |**Views**: 11141In 1832, Évariste Galois died. He was 20. The night before his death, he wrote a legendary letter to his friend, in which he claims to have found a mathematical treasure! Sadly, this treasure had long been buried in total indifference! It took nearly a century to rediscover it! Since then, Galois’ legacy has become some of the finest pure mathematics, which represents a hugely active field of research today with crucial applications to cryptography. Galois’ work is now known as Galois theory. In essence, it unveils the hidden symmetries of numbers!

The Limitless Vertigo of Cantor’s Infinite The Limitless Vertigo of Cantor’s Infinite

By Lê Nguyên Hoang |

No one believed him. Not even fellow mathematicians. They thought he was wrong. They thought he was crazy. Even he ended up doubting himself and went crazy. And yet, he had mathematically proved it all. Georg Cantor had figured out how to manipulate the infinite. Even more remarkable, he showed that there were actually several infinities; and some are bigger than others!

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 1785No one believed him. Not even fellow mathematicians. They thought he was wrong. They thought he was crazy. Even he ended up doubting himself and went crazy. And yet, he had mathematically proved it all. Georg Cantor had figured out how to manipulate the infinite. Even more remarkable, he showed that there were actually several infinities; and some are bigger than others!

A Mathematical Guide to Selling A Mathematical Guide to Selling

By Lê Nguyên Hoang |

How to best sell a good? Should we auction it like in movies? Since the 1960s, economists have addressed this question mathematically and found surprising results. Most notably, in 1981, Nobel prize winner Roger Myerson proved that most auctions you could think of would win you just as much as any basic auction, but that, as well, you could do better using his approach. Since, today, billions of dollars are at play in online auctions, you can imagine how hot a topic it has now become!

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 2234How to best sell a good? Should we auction it like in movies? Since the 1960s, economists have addressed this question mathematically and found surprising results. Most notably, in 1981, Nobel prize winner Roger Myerson proved that most auctions you could think of would win you just as much as any basic auction, but that, as well, you could do better using his approach. Since, today, billions of dollars are at play in online auctions, you can imagine how hot a topic it has now become!

Duality in Linear Programming Duality in Linear Programming

By Lê Nguyên Hoang |

Duality in linear programming yields plenty of amazing results that help understand and improve algorithms of resolution. This article shows the construction of the dual and its interpretation, as well as major results. In particular, matching of primal and dual bases will be dealt, before presenting the issue of degeneracy and its dual interpretation.

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Prerequisites:**Optimization by Linear Programming, Linear Algebra and Higher Dimensions |**Views**: 11649Duality in linear programming yields plenty of amazing results that help understand and improve algorithms of resolution. This article shows the construction of the dual and its interpretation, as well as major results. In particular, matching of primal and dual bases will be dealt, before presenting the issue of degeneracy and its dual interpretation.

Hypothesis Test with Statistics: Get it Right! Hypothesis Test with Statistics: Get it Right!

By Lê Nguyên Hoang |

Statistician Johnson recently claimed that up to 25% of published scientific experimental results were just wrong! To see why, let’s get to the bottom of the scientific method! And it’s probably more complicated than you think. In this article, we apply it rigorously to “prove” $\pi=3$. This will highlight the actually mechanism of the scientific method, its limits, and how much messages of experiments are often deformed!

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 3483Statistician Johnson recently claimed that up to 25% of published scientific experimental results were just wrong! To see why, let’s get to the bottom of the scientific method! And it’s probably more complicated than you think. In this article, we apply it rigorously to “prove” $\pi=3$. This will highlight the actually mechanism of the scientific method, its limits, and how much messages of experiments are often deformed!

Cryptography and Number Theory Cryptography and Number Theory

By Scott McKinney |

Over 300 years ago, a mathematician named Fermat discovered a subtle property about prime numbers. In the 1970’s, three mathematicians at MIT showed that his discovery could be used to formulate a remarkably powerful method for encrypting information to be sent online. The RSA algorithm, as it is known, is used to secure ATM transactions, online business, banking, and even electronic voting. Surprisingly, it’s not too difficult to understand, so let’s see how it works.

By Scott McKinney |

**Updated:**2016-01 |**Views**: 5253Over 300 years ago, a mathematician named Fermat discovered a subtle property about prime numbers. In the 1970’s, three mathematicians at MIT showed that his discovery could be used to formulate a remarkably powerful method for encrypting information to be sent online. The RSA algorithm, as it is known, is used to secure ATM transactions, online business, banking, and even electronic voting. Surprisingly, it’s not too difficult to understand, so let’s see how it works.

Euler’s Formula and the Utilities Problem Euler’s Formula and the Utilities Problem

By Lê Nguyên Hoang |

I was a kid when I was first introduced to the deceptively simple utilities problem. It’s only lately that I’ve discovered its solution! And it’s an amazing one! Indeed, it provides a wonderful insight into some fundamental mathematics, including Euler’s formula! This is nothing less than the gateway to the wonderful world of algebraic topology!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 7412I was a kid when I was first introduced to the deceptively simple utilities problem. It’s only lately that I’ve discovered its solution! And it’s an amazing one! Indeed, it provides a wonderful insight into some fundamental mathematics, including Euler’s formula! This is nothing less than the gateway to the wonderful world of algebraic topology!

Euclidean Geometry and Navigation Euclidean Geometry and Navigation

By Scott McKinney |

This is the first of a series of three posts. In this post we’ll see how the Greeks developed a system of geometry – literally “Earth measure” – to assist with planetary navigation. We then will see why their assumption that the Earth is flat means that Euclidean geometry is insufficient for studying the Earth. The Earth’s spherical surface looks flat from our perspective, but is actually qualitatively different from a flat surface. In the ensuing posts, we’ll see why this implies that it is impossible to make a perfectly accurate map of the Earth, and build on this idea to get a glimpse into Einstein’s revolutionary theories regarding the geometry of the space-time universe.

By Scott McKinney |

**Updated:**2016-02 |**Views**: 2295This is the first of a series of three posts. In this post we’ll see how the Greeks developed a system of geometry – literally “Earth measure” – to assist with planetary navigation. We then will see why their assumption that the Earth is flat means that Euclidean geometry is insufficient for studying the Earth. The Earth’s spherical surface looks flat from our perspective, but is actually qualitatively different from a flat surface. In the ensuing posts, we’ll see why this implies that it is impossible to make a perfectly accurate map of the Earth, and build on this idea to get a glimpse into Einstein’s revolutionary theories regarding the geometry of the space-time universe.

Dynamics, Chaos, Fractals (pt 2) Dynamics, Chaos, Fractals (pt 2)

By Scott McKinney |

Dynamical systems such as a system of 3 planetary bodies can exhibit surprisingly complicated behavior. If the initial state of the system is slightly varied, the resulting system behaves in a radically different manner. This “sensitivity to initial conditions” is a key element of what’s become (perhaps disproportionately) well-known as chaos. Using the mathematical notion of iterative systems, we can model such systems and understand how chaos arises out of deceptively simple foundations.

By Scott McKinney |

**Updated:**2015-12 |**Views**: 1139Dynamical systems such as a system of 3 planetary bodies can exhibit surprisingly complicated behavior. If the initial state of the system is slightly varied, the resulting system behaves in a radically different manner. This “sensitivity to initial conditions” is a key element of what’s become (perhaps disproportionately) well-known as chaos. Using the mathematical notion of iterative systems, we can model such systems and understand how chaos arises out of deceptively simple foundations.

The Magic of Algebra The Magic of Algebra

By Lê Nguyên Hoang |

The power of algebra lies in abstraction, and abstraction is basically forgetting. By retracing the History of algebra from its roots to more recent advancements, this article unveils the numerous breakthrough in our understanding of the world, by abusing of the power of forgetting.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 2295The power of algebra lies in abstraction, and abstraction is basically forgetting. By retracing the History of algebra from its roots to more recent advancements, this article unveils the numerous breakthrough in our understanding of the world, by abusing of the power of forgetting.

Game Theory and the Nash Equilibrium Game Theory and the Nash Equilibrium

By Lê Nguyên Hoang |

In the movie “A Beautiful Mind”, the character is John Nash. He is one of the founders of a large and important field of applied mathematics called game theory. Game Theory is the study of human interactions. Its fallouts in economy, politics or biology are countless. This article gives you an introduction to the concepts of this amazing way of thinking.

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 8418In the movie “A Beautiful Mind”, the character is John Nash. He is one of the founders of a large and important field of applied mathematics called game theory. Game Theory is the study of human interactions. Its fallouts in economy, politics or biology are countless. This article gives you an introduction to the concepts of this amazing way of thinking.

Pluto is NOT (not?) a Planet Pluto is NOT (not?) a Planet

By Lê Nguyên Hoang |

In 2006, Pluto was officially demoted from its planetary status. When we dig a little bit, this isn’t much of the surprise. What’s more interesting is rather why it ever was regarded as a planet, as the History of Pluto highlights a magic enterprise that science is!

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 1680In 2006, Pluto was officially demoted from its planetary status. When we dig a little bit, this isn’t much of the surprise. What’s more interesting is rather why it ever was regarded as a planet, as the History of Pluto highlights a magic enterprise that science is!

Regulation of Electricity Markets Regulation of Electricity Markets

By Lê Nguyên Hoang |

Electricity markets are not like any markets. In particular, they cannot be liberalized without regulation. In the article, I list the reasons why this market is specific and I conclude by giving you important features of a good regulation.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 1356Electricity markets are not like any markets. In particular, they cannot be liberalized without regulation. In the article, I list the reasons why this market is specific and I conclude by giving you important features of a good regulation.

Univalent Foundations of Mathematics Univalent Foundations of Mathematics

By Lê Nguyên Hoang |

In an effort to make mathematics more computable, a consortium of today’s greatest mathematicians have laid out new foundations. Amazingly, they all lie upon one single axiom, called univalence. The goal of this axiom is to make formal mathematics more similar to informal mathematics. With univalence, our Arabic numbers aren’t just like natural numbers; They are natural numbers. Univalence also has unforeseen and mesmerizing consequences.

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Prerequisites:**Type Theory: A Modern Computable Paradigm for Math, Homotopy Type Theory and Higher Inductive Types |**Views**: 2065In an effort to make mathematics more computable, a consortium of today’s greatest mathematicians have laid out new foundations. Amazingly, they all lie upon one single axiom, called univalence. The goal of this axiom is to make formal mathematics more similar to informal mathematics. With univalence, our Arabic numbers aren’t just like natural numbers; They are natural numbers. Univalence also has unforeseen and mesmerizing consequences.

The Secretary/Toilet Problem and Online Optimization The Secretary/Toilet Problem and Online Optimization

By Lê Nguyên Hoang |

A large chunk of applied mathematics has focused on optimizing something with respect to all relevant data. However, in practice, especially in the online world, the data is not available to us, and, yet, we’re still expected to make nearly optimal decisions. This problem is exemplified by the famous secretary problem, where a manager needs to decide to hire candidates right after interviews, even though he has not yet met all the candidates. In this article, we review this classic as well as many very recent developments.

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 1957A large chunk of applied mathematics has focused on optimizing something with respect to all relevant data. However, in practice, especially in the online world, the data is not available to us, and, yet, we’re still expected to make nearly optimal decisions. This problem is exemplified by the famous secretary problem, where a manager needs to decide to hire candidates right after interviews, even though he has not yet met all the candidates. In this article, we review this classic as well as many very recent developments.

Model-Dependent Realism Model-Dependent Realism

By Lê Nguyên Hoang |

Introduced by the two renowned theoretical physicists Stephen Hawking and Leonard Mlodinov in their book The Grand Design in 2010, model-dependent realism is a new controversial understanding of the universe. Based on solid logical reasonings and recent developments in physics, this concept may well be an incredible breakthrough for philosophy and science, as well as metaphysics.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 2769Introduced by the two renowned theoretical physicists Stephen Hawking and Leonard Mlodinov in their book The Grand Design in 2010, model-dependent realism is a new controversial understanding of the universe. Based on solid logical reasonings and recent developments in physics, this concept may well be an incredible breakthrough for philosophy and science, as well as metaphysics.

Can we measure peace ? The Global Peace Index (GPI) Can we measure peace ? The Global Peace Index (GPI)

By Estève Giraud |

By Estève Giraud |

**Updated:**2016-04 |**Views**: 51Computing Hunger worldwide: the Global Hunger Index (GHI) Computing Hunger worldwide: the Global Hunger Index (GHI)

By Estève Giraud |

The Global Hunger Index was first published in 2006 by the International Food Policy Research Institute and the NGO Welthungerhilfe. In 2007, Concern worldwide joined them. Since then, the Index reports every year the evolution of the hunger situation worldwide and focus on a given topic. How is it calculated? And what is hunger? How are we connected ? What can be done? To learn more, read the article below.

By Estève Giraud |

**Updated:**2015-12 |**Views**: 437The Global Hunger Index was first published in 2006 by the International Food Policy Research Institute and the NGO Welthungerhilfe. In 2007, Concern worldwide joined them. Since then, the Index reports every year the evolution of the hunger situation worldwide and focus on a given topic. How is it calculated? And what is hunger? How are we connected ? What can be done? To learn more, read the article below.

Fair Division and Cake-Cutting Fair Division and Cake-Cutting

By Lê Nguyên Hoang |

Cutting a cake to satisfy everyone is no piece of cake! In the article, we focus on classical definitions of fair divisions. I’ll criticize those definitions and conclude by extrapolating them to fairness in society.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 3376Cutting a cake to satisfy everyone is no piece of cake! In the article, we focus on classical definitions of fair divisions. I’ll criticize those definitions and conclude by extrapolating them to fairness in society.

Linear Algebra and Higher Dimensions Linear Algebra and Higher Dimensions

By Lê Nguyên Hoang |

Linear algebra is a one of the most useful pieces of mathematics and the gateway to higher dimensions. Using Barney Stinson’s crazy-hot scale, we introduce its key concepts.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 3018Linear algebra is a one of the most useful pieces of mathematics and the gateway to higher dimensions. Using Barney Stinson’s crazy-hot scale, we introduce its key concepts.

The Cubic Ball of the 2014 FIFA World Cup The Cubic Ball of the 2014 FIFA World Cup

By Lê Nguyên Hoang |

I know this sounds crazy. Even stupid. But Adidas did design a cubic ball, called brazuca, for the 2014 World Cup. And, yet, this cubic ball is rounder than any previous ball in football History. How is it possible? This article explains it.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 4545I know this sounds crazy. Even stupid. But Adidas did design a cubic ball, called brazuca, for the 2014 World Cup. And, yet, this cubic ball is rounder than any previous ball in football History. How is it possible? This article explains it.

Optimization by Integer Programming Optimization by Integer Programming

By Lê Nguyên Hoang |

Integer programming is arguably the greatest achievement of applied mathematics. Half of the time, it’s what’s used to solve real-world problems!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Prerequisites:**Optimization by Linear Programming |**Views**: 4484Integer programming is arguably the greatest achievement of applied mathematics. Half of the time, it’s what’s used to solve real-world problems!

The Magic of Analysis The Magic of Analysis

By Lê Nguyên Hoang |

This article retraces the endless pursuit of the infinite that is at the basis of mathematical analysis. From the first approximations of pi to the shape of our limitless universe, from the essential usefulness of differential equations to the troubles with infinite sums, we present the great ideas of mathematical geniuses all along History.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 1299This article retraces the endless pursuit of the infinite that is at the basis of mathematical analysis. From the first approximations of pi to the shape of our limitless universe, from the essential usefulness of differential equations to the troubles with infinite sums, we present the great ideas of mathematical geniuses all along History.

Bayesian Games: Math Models for Poker Bayesian Games: Math Models for Poker

By Lê Nguyên Hoang |

How to better understand Poker and card games in general? Bayesian games provide the right mathematical model just for that! These correspond to games with incomplete information and include probabilistic reasonings.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 4222How to better understand Poker and card games in general? Bayesian games provide the right mathematical model just for that! These correspond to games with incomplete information and include probabilistic reasonings.

Glaciers: Retreat, Moraines, Valleys, Fjörds Glaciers: Retreat, Moraines, Valleys, Fjörds

By Lê Nguyên Hoang |

Glaciers are spectacular phenomenons of nature. The physics they are based on is surprising, while the geological role they have is essential. In this article, we discuss these facts, as well as their retreats and their dangers.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 871Glaciers are spectacular phenomenons of nature. The physics they are based on is surprising, while the geological role they have is essential. In this article, we discuss these facts, as well as their retreats and their dangers.

The New Big Fish Called Mean-Field Game Theory The New Big Fish Called Mean-Field Game Theory

By Lê Nguyên Hoang |

In recent years, at the interface of game theory, control theory and statistical mechanics, a new baby of applied mathematics was given birth. Now named mean-field game theory, this new model represents a new active field of research with a huge range of applications! This is mathematics in the making!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 6850In recent years, at the interface of game theory, control theory and statistical mechanics, a new baby of applied mathematics was given birth. Now named mean-field game theory, this new model represents a new active field of research with a huge range of applications! This is mathematics in the making!

Cryptography and Quantum Physics Cryptography and Quantum Physics

By Scott McKinney |

Recent discoveries in the branch of physics known as quantum mechanics have powerful applications in the field of network security – they have the potential to break forms of internet security based on mathematics such as the RSA algorithm, and also present new ways to safely send information. In this article we’ll see how a physics-based method can be used to secure online information.

By Scott McKinney |

**Updated:**2016-02 |**Views**: 1623Recent discoveries in the branch of physics known as quantum mechanics have powerful applications in the field of network security – they have the potential to break forms of internet security based on mathematics such as the RSA algorithm, and also present new ways to safely send information. In this article we’ll see how a physics-based method can be used to secure online information.

The Surprising Flavor of Infinite Series The Surprising Flavor of Infinite Series

By Lê Nguyên Hoang |

1+2+4+8+16+…=-1, as proven by Henry Reich on Minute Physics! Now, as a mathematician, I must say that his proof is far from being rigorous. In fact, anyone familiar with the surprising flavor of infinite series should not find it convincing. Surprisingly though, his proof can be rigorously and naturally justified! Find out how!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 61181+2+4+8+16+…=-1, as proven by Henry Reich on Minute Physics! Now, as a mathematician, I must say that his proof is far from being rigorous. In fact, anyone familiar with the surprising flavor of infinite series should not find it convincing. Surprisingly though, his proof can be rigorously and naturally justified! Find out how!

Non-Euclidean Geometry and Map-Making Non-Euclidean Geometry and Map-Making

By Scott McKinney |

Geometry literally means “the measurement of the Earth”, and more generally means the study of measurements of different kinds of space. Geometry on a flat surface, and geometry on the surface of a sphere, for example, are fundamentally different. A consequence of this disparity is the fact that it is impossible to create a perfectly accurate (flat) map of the Earth’s (spherical) surface. Every map of the Earth necessarily has distortions. In this post we look at a few different methods of map-making and evaluate their distortions as well as their respective advantages.

By Scott McKinney |

**Updated:**2016-02 |**Views**: 2909Geometry literally means “the measurement of the Earth”, and more generally means the study of measurements of different kinds of space. Geometry on a flat surface, and geometry on the surface of a sphere, for example, are fundamentally different. A consequence of this disparity is the fact that it is impossible to create a perfectly accurate (flat) map of the Earth’s (spherical) surface. Every map of the Earth necessarily has distortions. In this post we look at a few different methods of map-making and evaluate their distortions as well as their respective advantages.

Symmetries and Group Theory Symmetries and Group Theory

By Lê Nguyên Hoang |

Beauty is extremely hard to define. Yet, physicists and artists seem to agree on an important feature of beauty, created by mathematicians: Symmetries. This article aims at introducing the beauty and the concepts on symmetries, from the basic geometrical symmetries to the more abstract fundamental automorphisms.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 1776Beauty is extremely hard to define. Yet, physicists and artists seem to agree on an important feature of beauty, created by mathematicians: Symmetries. This article aims at introducing the beauty and the concepts on symmetries, from the basic geometrical symmetries to the more abstract fundamental automorphisms.

The Essence of Quantum Mechanics The Essence of Quantum Mechanics

By Lê Nguyên Hoang |

Quantum mechanics is the most accurate and tested scientific theory, Its applications to real life are countless, as all new technologies are based on its principles. Yet, it’s also probably the most misunderstood theory, because it constantly contradicts common sense. This article presents the most important features of the theory.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 7113Quantum mechanics is the most accurate and tested scientific theory, Its applications to real life are countless, as all new technologies are based on its principles. Yet, it’s also probably the most misunderstood theory, because it constantly contradicts common sense. This article presents the most important features of the theory.

Proof by Mathematical Induction Proof by Mathematical Induction

By Lê Nguyên Hoang |

This article explores the potency of proofs by induction with 4 different stunning puzzles, from a lock puzzle and a lion issue, to the monk problem and the pencil conundrum!

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 4684This article explores the potency of proofs by induction with 4 different stunning puzzles, from a lock puzzle and a lion issue, to the monk problem and the pencil conundrum!

Advanced Game Theory Overview Advanced Game Theory Overview

By Lê Nguyên Hoang |

This article gives an overview of recent developments in game theory, including evolutionary game theory, extensive form games, mechanism design, bayesian games and mean field games.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Prerequisites:**Game Theory and the Nash Equilibrium |**Views**: 4076This article gives an overview of recent developments in game theory, including evolutionary game theory, extensive form games, mechanism design, bayesian games and mean field games.

Conditional Probabilities: Know what you Learn Conditional Probabilities: Know what you Learn

By Lê Nguyên Hoang |

Suppose a man has two children, one of them being a boy. What’s the probability of the other one being a boy too? This complex question has intrigued thinkers for long until mathematics eventually provided a great framework to better understanding of what’s known as conditional probabilities. In this article, we present the ideas through the two-children problem and other fun examples.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 3039Suppose a man has two children, one of them being a boy. What’s the probability of the other one being a boy too? This complex question has intrigued thinkers for long until mathematics eventually provided a great framework to better understanding of what’s known as conditional probabilities. In this article, we present the ideas through the two-children problem and other fun examples.

Column Generation and Dantzig-Wolfe Decomposition Column Generation and Dantzig-Wolfe Decomposition

By Lê Nguyên Hoang |

Column generation and the Dantzig-Wolfe decomposition are powerful tricks which have revolutionized optimization addressed to industrial problems, and generated millions and millions of dollars. My PhD supervisor effectively took great advantage of these tricks and founded companies with it. This article explains the tricks.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Prerequisites:**Linear Algebra and Higher Dimensions, Optimization by Linear Programming |**Views**: 3974Column generation and the Dantzig-Wolfe decomposition are powerful tricks which have revolutionized optimization addressed to industrial problems, and generated millions and millions of dollars. My PhD supervisor effectively took great advantage of these tricks and founded companies with it. This article explains the tricks.

High Dynamic Range and Tone Mapping High Dynamic Range and Tone Mapping

By Lê Nguyên Hoang |

Our eyes are amazing! Even today’s cameras are nowhere near competing with them. However, the recent development of high dynamic range (HDR) and tone mapping technologies creates new possibilities to get images nearly as awesome as what our eyes really see!

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 1484Our eyes are amazing! Even today’s cameras are nowhere near competing with them. However, the recent development of high dynamic range (HDR) and tone mapping technologies creates new possibilities to get images nearly as awesome as what our eyes really see!

Multicriteria with MACBETH Multicriteria with MACBETH

By Lê Nguyên Hoang |

As more and more complex problems are dealt with in our societies, developing models such as multi-criteria analysis is crucial to better understand these problems. MACBETH is a state-of-the-art method to do just that. Its functioning is described in this article.

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 1916As more and more complex problems are dealt with in our societies, developing models such as multi-criteria analysis is crucial to better understand these problems. MACBETH is a state-of-the-art method to do just that. Its functioning is described in this article.

Space Deformation and Group Representation Space Deformation and Group Representation

By Lê Nguyên Hoang |

All along the 20th century, pure algebraists have dug deep into the fundamental structures of mathematics. In this extremely abstract effort, they were greatly help by the possibility of representing these structures by space deformations, which could then be understood much better. This has led to breakthroughs, including the proof of Fermat’s las theorem. This article introduces the ideas of group representations.

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 1659All along the 20th century, pure algebraists have dug deep into the fundamental structures of mathematics. In this extremely abstract effort, they were greatly help by the possibility of representing these structures by space deformations, which could then be understood much better. This has led to breakthroughs, including the proof of Fermat’s las theorem. This article introduces the ideas of group representations.

The coach’s dilemma. The coach’s dilemma.

By Herminio López |

By Herminio López |

**Updated:**2016-02 |**Views**: 618Santa Routing and Heuristics in Operations Research Santa Routing and Heuristics in Operations Research

By Lê Nguyên Hoang |

Designing routes to visit customers has become one of applied mathematicians’ favorite optimization problems, as companies offer millions to solve them! This article discusses the clever technics they have come up with, and use them to help Santa deliver toys to kids all over the world!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 4872Designing routes to visit customers has become one of applied mathematicians’ favorite optimization problems, as companies offer millions to solve them! This article discusses the clever technics they have come up with, and use them to help Santa deliver toys to kids all over the world!

Colors: It’s not just about Wavelengths! Colors: It’s not just about Wavelengths!

By Lê Nguyên Hoang |

Colours… What are they really? Are there the same for all of us? And for other animals? How does color addition or subtraction work? How do they work on computers? And on printers? The mysterious (but not dark) world of colors is actually very colourful!

By Lê Nguyên Hoang |

**Updated:**2016-02 |**Views**: 2470Colours… What are they really? Are there the same for all of us? And for other animals? How does color addition or subtraction work? How do they work on computers? And on printers? The mysterious (but not dark) world of colors is actually very colourful!

The Addictive Mathematics of the 2048 Tile Game The Addictive Mathematics of the 2048 Tile Game

By Lê Nguyên Hoang |

2048 is the Internet sensation of the year. This very addictive game has been downloaded hundred of millions of times. Interestingly, this game raises plenty of intriguing mathematical questions. This article unveils some of them!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 93042048 is the Internet sensation of the year. This very addictive game has been downloaded hundred of millions of times. Interestingly, this game raises plenty of intriguing mathematical questions. This article unveils some of them!

The Harmonious Mathematics of Music The Harmonious Mathematics of Music

By Lê Nguyên Hoang |

It was when hearing the sounds of hammers that Pythagoras realized the ubiquity of numbers in mathematical harmony. He would go on laying down the mathematical foundations of music, based on octaves, perfect fifths and major thirds. This mathematics of music would then become the favourite playground of all musicians, from Beethoven to Gangnam Style.

By Lê Nguyên Hoang |

**Updated:**2015-12 |**Views**: 2084It was when hearing the sounds of hammers that Pythagoras realized the ubiquity of numbers in mathematical harmony. He would go on laying down the mathematical foundations of music, based on octaves, perfect fifths and major thirds. This mathematics of music would then become the favourite playground of all musicians, from Beethoven to Gangnam Style.

Type Theory: A Modern Computable Paradigm for Math Type Theory: A Modern Computable Paradigm for Math

By Lê Nguyên Hoang |

In 2013, three dozens of today’s brightest minds have just laid out new foundation of mathematics after a year of collective effort. This new paradigm better fits both informal and computationally-checkable mathematics. There is little doubt that it will fundamentally change our perspective on rigorous knowledge, and it could be that, in a few decades, the book they published turns out to be the bedrock of all mathematics, and, by extension, all human knowledge! Have a primer of this upcoming revolution, with this article on type theory, the theory that the book builds upon!

By Lê Nguyên Hoang |

**Updated:**2016-01 |**Views**: 7443In 2013, three dozens of today’s brightest minds have just laid out new foundation of mathematics after a year of collective effort. This new paradigm better fits both informal and computationally-checkable mathematics. There is little doubt that it will fundamentally change our perspective on rigorous knowledge, and it could be that, in a few decades, the book they published turns out to be the bedrock of all mathematics, and, by extension, all human knowledge! Have a primer of this upcoming revolution, with this article on type theory, the theory that the book builds upon!