
Arabic Numbers in Homotopy Type Theory

Lê Nguyên Hoang

April 21, 2014

This short document is a complement to my Science4All article on univalence. We will define formally
the type N of numbers written in the Arabic number system and the addition add of these numbers.

The goal of this document is primarily to get the reader and myself (but mostly myself) familiar with
homotopy type-theoretical constructions. It is definitely sketchy and has no aim at being perfectly rigorous
nor pedagogical. My original goal included proving the isomorphism (N,+) ' (N, add), but the mere
constructions are so lengthy that I have given up.

1 Digits and Lists

We first define the type Digit, with the ten constructors for each digit:

• 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 : Digit.

The obvious induction principle of that type requires values f(0) : B(0), . . . , f(9) : B(9) to determine an
outgoing function f :

∏
d:Digit B(d). We use this induction principle to define unitOfSum : Digit → Digit →

Digit which computes the unit of the sum, and carryOver : Digit→ Digit→ Digit the tens of the sum.

Lemma 1. We have unitOfSum(d, 0) = unitOfSum(0, d) = d and carryOver(d, 0) = carryOver(0, d) = 0 for
all d : Digit. Also, both functions are commutative.

Proof. By construction, and using refld and refl0.

We then define the type List : U → U , A 7→ List(A) with constructors

• ∅ : List(A).

• addLast : List(A)→ A→ List(A).

To construct an outgoing function f :
∏

x:List(A) B(x), the induction principle of List(A) requires f(∅) : B(∅)
and faddLast :

∏
x:List(A)

∏
a:A B(x)→ B(addLast(a, x)). When B(x) does not depend on x : List(A), we obtain

the recursion principle which constructs f : List(A)→ B from f(∅) : B and faddLast : B → A→ B.
We use this recursion principle to define addFirst : A→ List(A)→ List(A) by addFirst(a, ∅) :≡ addLast(a, ∅)

and addFirst(a, addLast(x, b)) :≡ addLast(addFirst(a, x), b).
Arabic numbers are represented by lists of digit. Thus, we are here interested in the type List(Digit). In

this case, the second constructor constructs a new digit list from a digit list t : List(Digit) representing the
tens and digit u : Digit representing the unit.

2 Addition of Digit Lists

To define the addition addDigitList : List(Digit) → List(Digit) → List(Digit) of digit lists, we first define the
addition with carry over h : List(Digit)→ List(Digit)→ Digit→ List(Digit), where the third digit input is the
carry over we shall denote c.

1

http://www.science4all.org/le-nguyen-hoang/univalence/


• h(∅, ∅, c) :≡ addLast(∅, c).

• h(addLast(t, u), ∅, c) :≡ addLast(h(t, ∅, carryOver(u, c)), unitOfSum(u, c)).

• h(∅, addLast(t, u), c) :≡ addLast(h(∅, t, carryOver(u, c)), unitOfSum(u, c)).

• Finally, the last case is the computation of h(addLast(t1, u1), addLast(t2, u2), c), which is slightly trickier.
We first determine the unit of the addition U(u1, u2, c) :≡ unitOfSum(unitOfSum(u1, u2), c). Then, we
compute the carry over C(u1, u2, c) :≡ unitOfSum(carryOver(u1, u2), carryOver(unitOfSum(u1, u2), c)).
Finally, we combine it all, yielding

h(addLast(t1, u1), addLast(t2, u2), c) :≡ addLast(h(t1, t2, C(u1, u2, c)), U(u1, u2, c)). (1)

Lemma 2. C and U are commutative, i.e. the order of the inputs does not matter.

Proof. By explicit induction.

Lemma 3. C(0, d, c) = C(d, 0, c) = carryOver(d, c) and U(0, d, c) = U(d, 0, c) = unitOfSum(d, c).

Proof. Using Lemma 1

Lemma 4. For any l1, l2 : List(Digit) and any d : Digit, we have h(l1, l2, d) = h(l2, l1, d).

Proof. The proof boils down to the construction of a function

f :
∏

d:Digit

∏
l1:List(Digit)

∏
l2:List(Digit)

h(l1, l2, d) = h(l2, l1, d). (2)

We do it by induction on l1 and l2, accordingly to the four bullet points defining h. The first bullet point
is straightforward, using the immediate proof refladdLast(∅,d). The two following bullet points are not much
harder, using a proof of h(t, ∅, c) = h(∅, t, c) by induction.

Finally, in the last case, we need to use the commutativity of unitOfSum and of carryOver we proved in
Lemma 1. This shows that u and c are equal in both constructions of h(l1, l2, d) and h(l2, l1, d). Finally,
by action on path, and using the proof h(t1, t2, c) = h(t2, t1, c) obtained by induction, we obtain a proof
h(l1, l2, c) = h(l2, l1, c).

We then define addlist(l1, l2) :≡ h(l1, l2, 0), where 0 : Digit is the zero digit.

Theorem 1. The addition addlist is commutative and ∅ is a neutral element.

Proof. Let us start with the proof that ∅ is a neutral element. We need to construct a function

f :
∏

l:List(Digit)

(addlist(l, ∅) = l)× (addlist(∅, l) = l). (3)

By induction, if l ≡ ∅, then addlist(l, ∅) ≡ ∅ ≡ l, and, similarly addlist(∅, l) ≡ l. So, we may provide the proof
f(∅) :≡ (refl∅, refl∅). Now, if l ≡ addLast(t, u), then

addlist(l, ∅) ≡ addLast(h(t, ∅, carryOver(u, 0)), unitOfSum(u, 0)) (induction) (4)

≡ addLast(addlist(t, ∅), u) (Lemma 1) (5)

Yet, by induction we may assume pr1(f(t)) : addlist(t, ∅) = t, hence we may construct a proof f1(l) :≡
apaddlist(−,u)(pr1(f(t))) of addlist(l, ∅) = l. Similarly, we may construct f2(l) : addlist(∅, l) = l, hence obtaining
f(l) :≡ (f1(l), f2(l)). This concludes the construction of f , and, hence, the proof that ∅ is a neutral element.

Proving the commutativity of the addition addlist corresponds to constructing a function

g :
∏

l1:List(Digit)

∏
l2:List(Digit)

(addlist(l1, l2) = addlist(l2, l1)). (6)

2



We do it by induction on l1. If l1 ≡ ∅, then f can be used to prove that both sides equal l2, and they
are henced equal. Formally, this corresponds to defining g(emptyset, l2) :≡ pr2(f(l2)) · pr1(f(l2))−1. Then,
we assume l1 ≡ addLast(t, u) and that we have constructed g(t, l2) for all l2 : List(Digit). Using Lemma 1,
it is easy to see that we have proofs that the units and the carry overs of the additions addlist(l1, l2) and
addlist(l2, l1) are equal.

3 Arabic Numbers

Now, as we have all learned it, two strings of digits may represent the same number. For instance “01 = 1”.
We formalize that by the fact that digit lists still need to be interpreted into numbers. This leads us to
define the type N of numbers in the Arabic number system by

• n : List(Digit)→ N.

• For all l : List(Digit), a path p(l) : n(l) = n(addFirst(0, l)).

Lemma 5. For any l1, l2 : List(Digit) and any d : Digit, we have n(h(addFirst(0, l1), l2, d)) = n(h(l1, l2, d)).

Proof. We do it by induction on l1 and l2. We have four cases to verify, which correspond to the four bullet
points of the definition of h.

First case. If l1 ≡ ∅, we have addFirst(0, l1) ≡ addLast(∅, 0). If l2 ≡ ∅, using the second bullet point
definition of h, we have

h(addFirst(0, l1), l2, d) ≡ addLast(h(∅, ∅, carryOver(0, d)), unitOfSum(0, d)) (7)

≡ addLast(addLast(∅, 0), addLast(∅, d)) (8)

≡ addFirst(0, addLast(∅, d)). (9)

This is the digit list “0d”. Yet, h(l1, l2, d) ≡ addLast(∅, d), which is “d”. But the path constructor of N yields
a path p(addLast(∅, d)) : addLast(∅, d) = n(addFirst(0, addLast(∅, d))).

Second case. Now, if l1 ≡ ∅ and l2 ≡ addLast(t2, u2), then we may use a proof of that the lemma holds
for ∅, t2 and d. But then,

h(addFirst(0, l1), l2, d) ≡ h(addLast(∅, 0), addLast(t2, u2), d) (10)

≡ addLast(h(∅, t2, C(0, u2, d)), U(0, u2, d)) (11)

= addLast(h(∅, t2, carryOver(u2, d)), unitOfSum(u2, d)), (12)

by using Lemma 3. Yet, this last expression is precisely h(l1, l2, d), which proves the second case.
Third case. If l1 ≡ addLast(t1, u1) and l2 ≡ ∅, then we may assume by induction that the lemma holds

of t1, ∅ and c. But then,

h(addFirst(0, l1), l2, d) ≡ addLast(h(addFirst(0, t1), ∅, carryOver(u1, d)), unitOfSum(u1, d)) (13)

= addLast(h(t1, ∅, carryOver(u1, d)), unitOfSum(u1, d)), (14)

which is exactly the expression for l1, l2 and d, and proves the Lemma for this case too.
Fourth case. Finally, assume l1 ≡ addLast(t1, u1) and l2 ≡ addLast(t2, u2), and, by induction, that the

lemma holds for t1, t2 and c. Then,

h(addFirst(0, l1), l2, d) ≡ addLast(h(addFirst(0, t1), t2, C(u1, u2, d)), U(u1, u2, d)) (15)

= addLast(h(t1, t2, C(u1, u2, d)), U(u1, u2, d)), (16)

which is exactly the right expression to conclude the proof.

To construct f :
∏

x:N B(x), the induction principle requires a function flist :
∏

l:List(Digit) B(n(l)) and a

path fpath :
∏

l:List(Digit) f(l) =B
p(l) f(addFirst(0, l)). Let us apply it to define add : N→ N→ N:

3



• add(n(l1), n(l2)) :≡ n(addDigitList(l1, l2)).

• We now need to prove that we have the identities add(n(l1), n(l2)) = add(n(addFirst(0, l1)), n(l2)) and
add(n(l1), n(l2)) = add(n(l1), n(addFirst(0, l2))) for all l1, l2 : List(Digit). But this is given by Lemma 5,
using d ≡ 0 and the commutativity of h proven by Lemma 4.

4 Isomorphism

We define f : N→ N by f(0) :≡ addLast(∅, 0) and f(succ(n)) :≡ add(f(n), addLast(∅, 1)).
Reciprocally, we need to define multiplication on N. We do it by induction, with 0 × m = 0 and

succ(n)×m = (n×m)+m. Then, we define digitToN : Digit→ N by digitToN(0) :≡ 0, digitToN(1) :≡ succ(0),
digitToN(2) :≡ succ(succ(0)). . . and so on until 9. Next, we define digitListToN : List(Digit)→ N by induction
by digitListToN(∅) :≡ 0 and

digitListToN(addLast(t, u)) :≡ digitToN(u) + (digitListToN(t)× (succ(digitToN(9)))). (17)

Now, to define g : N→ N, we first need to prove the following lemma:

Lemma 6. For any l : List(Digit), we have digitListToN(addFirst(0, l)) = digitListToN(l).

Proof. By induction on l. If l ≡ ∅, then

digitListToN(addFirst(0, l)) ≡ digitListToN(addLast(∅, 0)) ≡ 0 + (0× 10) ≡ 0 ≡ digitListToN(l). (18)

Now, if l ≡ addLast(t, u), then we may assume by induction that the Lemma holds for t. But then, by action
on path,

digitListToN(addFirst(0, l)) ≡ digitListToN(addLast(addFirst(0, t), u) (19)

= digitListToN(addLast(t, u)) (20)

≡ digitListToN(l), (21)

which concludes the proof.

Let us pg(l) the proof we constructed. Then, we may finally define g : N→ N by g(n(l)) :≡ digitListToN(l)
and the proofs pg(l) : g(n(l)) = g(n(addFirst(0, l))).

To prove the isomorphism of (N,+) and (N, add), all we have left to do is to give proofs of

• g(f(n)) = n for all n : N.

• f(g(n)) = n for all n : N.

• f(n + m) = f(n) + f(m) for all n,m : N.

4


	Digits and Lists
	Addition of Digit Lists
	Arabic Numbers
	Isomorphism

